Prediction of Neoadjuvant Chemoradiotherapy Response in Rectal Cancer Patients Using Harmonized Radiomics of Multcenter 18F-FDG-PET Image

Cancers (Basel). 2023 Nov 30;15(23):5662. doi: 10.3390/cancers15235662.

Abstract

We developed machine and deep learning models to predict chemoradiotherapy in rectal cancer using 18F-FDG PET images and harmonized image features extracted from 18F-FDG PET/CT images. Patients diagnosed with pathologic T-stage III rectal cancer with a tumor size > 2 cm were treated with neoadjuvant chemoradiotherapy. Patients with rectal cancer were divided into an internal dataset (n = 116) and an external dataset obtained from a separate institution (n = 40), which were used in the model. AUC was calculated to select image features associated with radiochemotherapy response. In the external test, the machine-learning signature extracted from 18F-FDG PET image features achieved the highest accuracy and AUC value of 0.875 and 0.896. The harmonized first-order radiomics model had a higher efficiency with accuracy and an AUC of 0.771 than the second-order model in the external test. The deep learning model using the balanced dataset showed an accuracy of 0.867 in the internal test but an accuracy of 0.557 in the external test. Deep-learning models using 18F-FDG PET images must be harmonized to demonstrate reproducibility with external data. Harmonized 18F-FDG PET image features as an element of machine learning could help predict chemoradiotherapy responses in external tests with reproducibility.

Keywords: 18F-FDG PET; deep learning; harmonized radiomics; machine learning; radiochemotherapy.