Vac-and-fill: A micromoulding technique for fabricating microneedle arrays with vacuum-activated, hands-free mould-filling

Int J Pharm. 2024 Jan 25:650:123706. doi: 10.1016/j.ijpharm.2023.123706. Epub 2023 Dec 14.

Abstract

We report a simple and reproducible micromoulding technique that dynamically fills microneedle moulds with a liquid formulation, using a plastic syringe, triggered by the application of vacuum ('vac-and-fill'). As pressure around the syringe drops, air inside the syringe pushes the plunger to uncover an opening in the syringe and fill the microneedle mould without manual intervention, therefore removing inter-operator variability. The technique was validated by monitoring the plunger movement and pressure at which the mould would be filled over 10 vacuum cycles for various liquid formulation of varying viscosity (water, glycerol, 20 % polyvinylpyrrolidone (PVP) solution or 40 % PVP solution). Additionally, the impact of re-using the disposable syringes on plunger movement, and thus the fill pressure, was investigated using a 20 % PVP solution. The fill pressure was consistent at 300-450 mbar. It produced well-formed and mechanically robust PVP, poly(methylvinylether/maleic anhydride) and hydroxyethylcellulose microneedles from liquid formulations. This simple and inexpensive technique of micromoulding eliminated the air entrapment and bubble formation, which prevent reproducible microneedle formation, in the resultant microneedle arrays. It provides a cost-effective alternative to the conventional micromoulding techniques, where the application of vacuum ('fill-and-vac') or centrifugation following mould-filling may be unsuitable, ineffective or have poor reproducibility.

Keywords: Liquid formulation; Micromolding; Polymer microneedle; Pressure; Vacuum.

MeSH terms

  • Drug Delivery Systems* / methods
  • Needles
  • Reproducibility of Results
  • Syringes*
  • Vacuum