Green synthesis of ginger-encapsulated zinc oxide nanoparticles: Unveiling their characterization and selective cytotoxicity on MDA-MB 231 breast cancer cells

J Adv Pharm Technol Res. 2023 Oct-Dec;14(4):325-331. doi: 10.4103/JAPTR.JAPTR_313_23. Epub 2023 Oct 30.

Abstract

Zinc oxide nanoparticles (ZnO-NPs) were synthesized using ginger (Zingiber officinale) extracts in a green synthesis approach and evaluated their in vitro cytotoxicity effect on the MDA-MB 231 breast cancer cell line. The bottom-up approach was employed to develop the green-synthesized ginger-encapsulated ZnO-NPs (GZnO-NPs) without using hazardous substances. The most substantial Fourier-transform infrared absorption peak of the ginger root extract was seen at 1634.24 cm-1. The peak also confirmed the presence of ginger root extract-encapsulated ZnO-NPs at 1556.79, 1471.54, and 1019.83 cm-1. It indicates that the biomolecules found in plant extracts behave as capping agents, aiding in the formation of nanoparticles. The mean particle sizes (PSs) of optimized GZnO-NPs of the ratios 1:2 were found to be 104.01 ± 7.12 nm with a zeta potential of -11.5 ± 1.31 mV. The X-ray diffraction and scanning electron microscope analysis confirmed that the prepared nanoparticles were spherical and crystalline, with PS ranging from 100 to 150 nm. The GZnO-NPs were subjected to MTT assay and cellular migration potential, and it was found that the inhibitory concentration on the MDA-MB 231 (breast) cancer cell line and scratch area showed a dose-dependent efficacy. The successfully green-synthesized GZnO-NPs effectively induced cell death in the MDA-MB 231 cancer cell line. The scratch assay results confirmed that prepared GZnO-NPs inhibited the proliferation and migration of cancerous cells.

Keywords: Cellular migration potential; MTT assay; ginger root extract; green synthesis; zinc oxide nanoparticles.