Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1β release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1β release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.
Keywords: CMML; IL-1 blockers; KRAS; NLRP3 blockers; NLRP3 inflammasome; RAS mutations; anakinra; inflammation; myelodysplastic syndromes; myeloproliferative neoplasms.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.