The present study was designed to evaluate the anti-obesity and anti-hyperglycemic activity of Thymoquinone (ThyQ) isolated from Nigella sativa seeds. Male Wistar rats were randomly divided into five groups and fed either normal pellet diet or high-fat diet (HFD) for 18 weeks and water ad-libitum. Group I: normal pellet diet (NPD)-fed, Group II: high-fat diet (HFD)-fed, Group III: HFD-fed-ThyQ (20 mg)-treated, Group IV: HFD-fed-ThyQ (40 mg)-treated and Group V: HFD-fed-Orlistat (5 mg)-treated group. Intervention with ThyQ started from 12th week onwards to HFD-fed rats of group III and IV. ThyQ administration significantly (p < 0.01) mitigated body weight gain, blood glucose, insulin level, serum and liver lipids (except HDL) and improved glucose tolerance and insulin sensitivity as evaluated by oral glucose tolerance test (OGTT), homeostasis model assessment-insulin resistance (HOMA-IR) and insulin tolerance test (ITT). Furthermore, ThyQ significantly (p < 0.01) diminished serum aspartate transaminase (AST), alanine transaminase (ALT), acetyl-CoA carboxylase (ACC), plasma leptin, resistin and visfatin levels but enhanced lipoprotein lipase (LPL) and adiponectin levels. RT-PCR analysis demonstrated down-regulated mRNA expression of sterol regulatory element-binding proteins-1c (SREBP-1c), CCAAT/enhancer-binding protein-α (C/EBP-α) and fatty acid synthase (FAS) but upregulation of Insulin receptor substrate-1 (IRS-1).Western blot analysis displayed phosphorylation of adenosine monophosphate activated protein kinase (AMPK) in ThyQ-treated rats. Liver microtome sections of HFD-fed rats showed degenerated hepatocytes with high lipid stores while that of adipose tissue sections displayed large, fat-laden adipocytes, however, these histological changes were considerably attenuated in ThyQ-treated groups. Together these findings demonstrate that ThyQ can be a valuable therapeutic compound to potentially alleviate diet-induced obesity, hyperglycemia and insulin resistance.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-023-03847-x.
Keywords: Adipokines; Glycemic-lipid profile; Nigella sativa; Obesity rats; Thymoquinone.
© King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.