High-grade serous ovarian carcinoma (HGSOC) is a heterogeneous disease, and a highstromal/desmoplastic tumor microenvironment (TME) is associated with a poor outcome. Stromal cell subtypes, including fibroblasts, myofibroblasts, and cancer-associated mesenchymal stem cells, establish a complex network of paracrine signaling pathways with tumor-infiltrating immune cells that drive effector cell tumor immune exclusion and inhibit the antitumor immune response. In this work, we integrate single-cell transcriptomics of the HGSOC TME from public and in-house datasets (n = 20) and stratify tumors based upon high vs. low stromal cell content. Although our cohort size is small, our analyses suggest a distinct transcriptomic landscape for immune and non-immune cells in high-stromal vs. low-stromal tumors. High-stromal tumors have a lower fraction of certain T cells, natural killer (NK) cells, and macrophages, and increased expression of CXCL12 in epithelial cancer cells and cancer-associated mesenchymal stem cells (CA-MSCs). Analysis of cell-cell communication indicate that epithelial cancer cells and CA-MSCs secrete CXCL12 that interacte with the CXCR4 receptor, which is overexpressed on NK and CD8+ T cells. Dual IHC staining show that tumor infiltrating CD8 T cells localize in proximity of CXCL12+ tumor area. Moreover, CXCL12 and/or CXCR4 antibodies confirm the immunosuppressive role of CXCL12-CXCR4 in high-stromal tumors.
© 2024. The Author(s).