Targeting Src SH3 domain-mediated glycolysis of HSC suppresses transcriptome, myofibroblastic activation, and colorectal liver metastasis

Hepatology. 2024 Sep 1;80(3):578-594. doi: 10.1097/HEP.0000000000000763. Epub 2024 Jan 24.

Abstract

Background and aims: Transforming growth factor-beta 1 (TGFβ1) induces HSC activation into metastasis-promoting cancer-associated fibroblasts (CAFs), but how the process is fueled remains incompletely understood. We studied metabolic reprogramming induced by TGFβ1 in HSCs.

Approaches and results: Activation of cultured primary human HSCs was assessed by the expression of myofibroblast markers. Glucose transporter 1 (Glut1) of murine HSC was disrupted by Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination (Cre/LoxP). Plasma membrane (PM) Glut1 and glycolysis were studied by biotinylation assay and the Angilent Seahorse XFe96 Analyzer. S.c. HSC/tumor co-implantation and portal vein injection of MC38 colorectal cancer cells into HSC-specific Glut1 knockout mice were performed to determine in vivo relevance. Transcriptome was obtained by RNA sequencing of HSCs and spatialomics with MC38 liver metastases. TGFβ1-induced CAF activation of HSCs was accompanied by elevation of PM Glut1, glucose uptake, and glycolysis. Targeting Glut1 or Src by short hairpin RNA, pharmacologic inhibition, or a Src SH3 domain deletion mutant abrogated TGFβ1-stimulated PM accumulation of Glut1, glycolysis, and CAF activation. Mechanistically, binding of the Src SH3 domain to SH3 domain-binding protein 5 led to a Src/SH3 domain-binding protein 5/Rab11/Glut1 complex that activated Rab11-dependent Glut1 PM transport under TGFβ1 stimulation. Deleting the Src SH3 domain or targeting Glut1 of HSCs by short hairpin RNA or Cre recombinase/LoxP sequence derived from bacteriophage P1 recombination suppressed CAF activation in mice and MC38 colorectal liver metastasis. Multi-omics revealed that Glut1 deficiency in HSCs/CAFs suppressed HSC expression of tumor-promoting factors and altered MC38 transcriptome, contributing to reduced MC38 liver metastases.

Conclusion: The Src SH3 domain-facilitated metabolic reprogramming induced by TGFβ1 represents a target to inhibit CAF activation and the pro-metastatic liver microenvironment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Colorectal Neoplasms* / pathology
  • Glucose Transporter Type 1 / genetics
  • Glucose Transporter Type 1 / metabolism
  • Glycolysis*
  • Humans
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • Liver Neoplasms* / pathology
  • Liver Neoplasms* / secondary
  • Mice
  • Mice, Knockout
  • Myofibroblasts* / metabolism
  • Transcriptome*
  • Transforming Growth Factor beta1 / metabolism
  • src Homology Domains*

Substances

  • Glucose Transporter Type 1
  • Transforming Growth Factor beta1