This work aims to show how prior knowledge about the structure of a heterogeneous animal population can be leveraged to improve the abundance estimation from capture-recapture survey data. We combine the Open Jolly-Seber model with finite mixtures and propose a parsimonious specification tailored to the residency patterns of the common bottlenose dolphin. We employ a Bayesian framework for our inference, discussing the appropriate choice of priors to mitigate label-switching and nonidentifiability issues, commonly associated with finite mixture models. We conduct a series of simulation experiments to illustrate the competitive advantage of our proposal over less specific alternatives. The proposed approach is applied to data collected on the common bottlenose dolphin population inhabiting the Tiber River estuary (Mediterranean Sea). Our results provide novel insights into this population's size and structure, shedding light on some of the ecological processes governing its dynamics.
Keywords: Bayesian modeling; abundance estimation; capture-recapture; finite mixtures.
© 2024 The Authors. Biometrical Journal published by Wiley-VCH GmbH.