Nanoconfinement of cations in layered oxide cathode is an important approach to realize advanced zinc ion storage performance. However, thus far, the conventional hydrothermal/solvothermal route for this nanoconfinement has been restricted to its uncontrollable phase structure and the difficulty on the multiple cation co-confinement simultaneously. Herein, this work reports a general, supramolecular self-assembly of ultrathin V2O5 nanosheets using various unitary cations including Na+, K+, Mg2+, Ca2+, Zn2+, Al3+, NH4 +, and multiple cations (NH4 + + Na+, NH4 + + Na+ + Ca2+, NH4 + + Na+ + Ca2+ +Mg2+). The unitary cation confinement results in a remarkable increase in the specific capacity and Zn-ion diffusion kinetics, and the multiple cation confinement gives rise to superior structural and cycling stability by multiple cation synergetic pillaring effect. The optimized diffusion coefficient of Zn-ion (7.5 × 10-8 cm2 s-1) in this assembly series surpasses most of the V-based cathodes reported up to date. The work develops a novel multiple-cations nanoconfinement strategy toward high-performance cathode for aqueous battery. It also provides new insights into the guest cation regulation of zinc-ion diffusion kinetics through a general, supramolecular assembly pathway.
Keywords: aqueous zinc‐ion battery; ion diffusion kinetic; multiple cations; nanoconfinement; supramolecular assembly.
© 2024 Wiley‐VCH GmbH.