Aims: Polyglucosan body myopathy 1 (PGBM1) is a type of glycogen storage disease where polyglucosan accumulation leads to cardiomyopathy and skeletal muscle myopathy. Variants of RBCK1 is related with PGBM1. We present a newly discovered pathogenic RBCK1 variant resulting in dilated cardiomyopathy (DCM) and a comprehensive literature review.
Methods and results: Whole-exome sequencing (WES) was utilized to detect genetic variations in a 7-year-old girl considered the proband. Sanger sequencing was performed to validate the variant in the patient and all the available family members, whether affected or unaffected. The variant's pathogenicity was assessed by conducting a cosegregation analysis within the family with in silico predictive software. WES showed that the proband's RBCK1 gene contained a missense likely pathogenic homozygous nucleotide variant, c.598_599insT: p.His200LeufsTer14 (NM_001323956.1), in exon 8. The computational analysis supported the variant's pathogenicity. The variant was identified in a heterozygous form among all the healthy members of the family. Variants with changes in N-terminal part of the protein were more likely to manifest immunodeficiency and auto-inflammation than those with C-terminal protein modifications according to prior variations of RBCK1 reported in the literature.
Conclusions: Our study offers novel findings indicating an RBCK1 variant in individuals of Iranian ancestry presenting with DCM leading to heart transplantation and myopathy without immunodeficiency or auto-inflammation.
Keywords: DCM; Genetic; PBD; PGBM1; RBCK1; Variant.
© 2024 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.