Pan-cancer and single-cell analysis reveal THRAP3 as a prognostic and immunological biomarker for multiple cancer types

Front Genet. 2024 Jan 25:15:1277541. doi: 10.3389/fgene.2024.1277541. eCollection 2024.

Abstract

Background: Thyroid hormone receptor-associated protein 3 (THRAP3) is of great significance in DNA damage response, pre-mRNA processing, and nuclear export. However, the biological activities of THRAP3 in pan-cancer remain unexplored. We aimed to conduct a comprehensive analysis of THRAP3 and validate its expression levels in lung cancer. Methods: A pan-cancer analysis was conducted to study the correlation of THRAP3 expression with clinical outcome and the tumor microenvironment based on the available bioinformatics databases. The protein levels of THRAP3 were explored in lung cancer by immunohistochemistry (IHC) analysis. Single-cell sequencing (ScRNA-seq) analysis was employed to investigate the proportions of each cell type in lung adenocarcinoma (LUAD) and adjacent normal tissues, along with the expression levels of THRAP3 within each cell type. Results: THRAP3 is upregulated in multiple cancer types but exhibits low expression in lung squamous cell carcinoma (LUSC). immunohistochemistry results showed that THRAP3 is a lowly expression in LUAD and LUSC. THRAP3 elevation had a poor prognosis in kidney renal clear cell carcinoma and a prolonged survival time in kidney chromophobe, brain lower-grade glioma and skin cutaneous melanoma, as indicated by the KM curve. Single-cell analysis confirmed that the proportions of T/B cells, macrophages, and fibroblasts were significantly elevated in LUAD tissues, and THRAP3 is specifically overexpressed in mast cells. Conclusion: Our findings uncover that THRAP3 is a promising prognostic biomarker and immunotherapeutic target in multiple cancers, but in LUAD and LUSC, it may be a protective gene.

Keywords: biomarker; immune infiltration; pan-cancer; prognosis; single cell.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The present study was funded by Shandong provincial Natural Science Foundation (Grant No. ZR2020MH201).