MBNL1 Regulates Programmed Postnatal Switching Between Regenerative and Differentiated Cardiac States

Circulation. 2024 Jun 4;149(23):1812-1829. doi: 10.1161/CIRCULATIONAHA.123.066860. Epub 2024 Mar 1.

Abstract

Background: Discovering determinants of cardiomyocyte maturity is critical for deeply understanding the maintenance of differentiated states and potentially reawakening endogenous regenerative programs in adult mammalian hearts as a therapeutic strategy. Forced dedifferentiation paired with oncogene expression is sufficient to drive cardiac regeneration, but elucidation of endogenous developmental regulators of the switch between regenerative and mature cardiomyocyte cell states is necessary for optimal design of regenerative approaches for heart disease. MBNL1 (muscleblind-like 1) regulates fibroblast, thymocyte, and erythroid differentiation and proliferation. Hence, we examined whether MBNL1 promotes and maintains mature cardiomyocyte states while antagonizing cardiomyocyte proliferation.

Methods: MBNL1 gain- and loss-of-function mouse models were studied at several developmental time points and in surgical models of heart regeneration. Multi-omics approaches were combined with biochemical, histological, and in vitro assays to determine the mechanisms through which MBNL1 exerts its effects.

Results: MBNL1 is coexpressed with a maturation-association genetic program in the heart and is regulated by the MEIS1/calcineurin signaling axis. Targeted MBNL1 overexpression early in development prematurely transitioned cardiomyocytes to hypertrophic growth, hypoplasia, and dysfunction, whereas loss of MBNL1 function increased cardiomyocyte cell cycle entry and proliferation through altered cell cycle inhibitor transcript stability. Moreover, MBNL1-dependent stabilization of estrogen-related receptor signaling was essential for maintaining cardiomyocyte maturity in adult myocytes. In accordance with these data, modulating MBNL1 dose tuned the temporal window of neonatal cardiac regeneration, where increased MBNL1 expression arrested myocyte proliferation and regeneration and MBNL1 deletion promoted regenerative states with prolonged myocyte proliferation. However, MBNL1 deficiency was insufficient to promote regeneration in the adult heart because of cell cycle checkpoint activation.

Conclusions: Here, MBNL1 was identified as an essential regulator of cardiomyocyte differentiated states, their developmental switch from hyperplastic to hypertrophic growth, and their regenerative potential through controlling an entire maturation program by stabilizing adult myocyte mRNAs during postnatal development and throughout adulthood. Targeting loss of cardiomyocyte maturity and downregulation of cell cycle inhibitors through MBNL1 deletion was not sufficient to promote adult regeneration.

Keywords: RNA stability; cell differentiation; heart regeneration; postnatal development; transcriptome stabilization.

MeSH terms

  • Animals
  • Cell Differentiation*
  • Cell Proliferation
  • DNA-Binding Proteins
  • Mice
  • Myeloid Ecotropic Viral Integration Site 1 Protein / genetics
  • Myeloid Ecotropic Viral Integration Site 1 Protein / metabolism
  • Myocytes, Cardiac* / metabolism
  • RNA-Binding Proteins* / genetics
  • RNA-Binding Proteins* / metabolism
  • Regeneration*
  • Signal Transduction

Substances

  • Mbnl1 protein, mouse
  • RNA-Binding Proteins
  • Myeloid Ecotropic Viral Integration Site 1 Protein
  • DNA-Binding Proteins