Proteomics applications in next generation induced pluripotent stem cell models

Expert Rev Proteomics. 2024 Apr;21(4):217-228. doi: 10.1080/14789450.2024.2334033. Epub 2024 Mar 27.

Abstract

Introduction: Induced pluripotent stem (iPS) cell technology has transformed biomedical research. New opportunities now exist to create new organoids, microtissues, and body-on-a-chip systems for basic biology investigations and clinical translations.

Areas covered: We discuss the utility of proteomics for attaining an unbiased view into protein expression changes during iPS cell differentiation, cell maturation, and tissue generation. The ability to discover cell-type specific protein markers during the differentiation and maturation of iPS-derived cells has led to new strategies to improve cell production yield and fidelity. In parallel, proteomic characterization of iPS-derived organoids is helping to realize the goal of bridging in vitro and in vivo systems.

Expert opinions: We discuss some current challenges of proteomics in iPS cell research and future directions, including the integration of proteomic and transcriptomic data for systems-level analysis.

Keywords: Induced pluripotent stem cell; mass spectrometry; organoids; proteomics; secretome.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Differentiation*
  • Humans
  • Induced Pluripotent Stem Cells* / cytology
  • Induced Pluripotent Stem Cells* / metabolism
  • Organoids / metabolism
  • Proteomics* / methods