Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition with painful bladder. At present, the pathogenesis of IC/BPS is still unknown. Quercetin (QCT) is a kind of natural flavonoid with wide sources and multiple biological activities. The purpose of this study was to explore the effects of QCT on mRNA expression and related regulatory signal pathways in IC model rats.
Methods: LL-37 was used to induce the IC/BPS model rats. 20 mg/kg QCT was injected intraperitoneally into IC/BPS rats. ELISA, HE, Masson and TB staining were used to evaluate the level of inflammation and pathology. The concentration of QCT in rats was detected by HPLC. The mRNA sequencing was used to detect the differentially expressed (DE) mRNA in each group. The over-expression experiment of Lpl was carried out in IC/BPS model rats.
Results: QCT treatment significantly decreased the level of MPO, IL-1β, IL-6 and TNF-α induced by LL-37 in rats, and alleviated bladder injury and mast cell degranulation. There were significant differences in mRNA sequencing data between groups, and the hub gene Lpl were screened by Cytohubba. The expression of Lpl was downregulated in IC/BPS rats. QCT intervention promoted Lpl expression. Overexpression of Lpl reduced the bladder injury induced by LL-37, increased GAG level and decreased the expression of MPO, IL-1β, IL-6 and TNF-α.
Conclusion: In this study, we provided the DE mRNA in IC/BPS rats treated with QCT, the signaling pathways for DE enrichment, screened out the hub genes, and revealed that Lpl overexpression alleviated IC/BPS model rats.
Keywords: Lpl; high performance liquid chromatography; interstitial cystitis/bladder pain syndrome; mRNA sequence; quercetin.