Vitamin D deficiency is a worldwide health issue especially in women. Serum vitamin D concentrations vary depending on the weather. However, the ideal vitamin D supplementation strategy related to weather remains uncertain. We aimed to investigate the relationship between climate factors and serum 25-hydroxy vitamin D [25(OH)D] concentrations. This study included 11,272 women aged 20-79 who visited a health promotion center for annual checkups between January 2013 and December 2015. We reviewed medical records and collected daily meteorological data. We analyzed the association between serum 25(OH)D concentration and climate factors using simple and multiple regression models and then predicted serum 25(OH)D concentration using multiple fractional polynomial models. The median age of the participants was 51 years (20-79 years), and the mean serum 25(OH)D level was 17.4 ± 8.6 ng/mL. The serum 25(OH)D concentration was lower in young women than in older women. The proportions of women with adequate 25(OH)D levels were 14.9% and 47.0% in the age groups 20-29 and 70-79, respectively. The maximum level of predicted log 25(OH)D was found in September, and the minimum was found in January. In multiple regression analysis, age and monthly mean temperature were associated with 25(OH)D concentrations. Serum 25(OH)D level was predicted using the following formula: log (25(OH)D) = 2.144 + 0.009 × age + 0.018 × ((temperature + 12.4)/10)2 (P < 0.001, adjusted R2 = 0.091). Serum 25(OH)D concentrations changed according to air temperature. An adequate strategy for vitamin D supplementation, based on air temperature, is necessary to maintain healthy serum 25(OH)D levels.
Copyright: © 2024 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.