Introduction: Radiologists have extensively employed the interpretation of chest X-rays (CXR) to identify visual markers indicative of COVID-19 infection, offering an alternative approach for the screening of infected individuals. This research article presents CovMediScanX, a deep learning-based framework designed for a rapid and automated diagnosis of COVID-19 from CXR scan images.
Methods: The proposed approach encompasses gathering and preprocessing CXR image datasets, training deep learning-based custom-made Convolutional Neural Network (CNN), pre-trained and hybrid transfer learning models, identifying the highest-performing model based on key evaluation metrics, and embedding this model into a web interface called CovMediScanX, designed for radiologists to detect the COVID-19 status in new CXR images.
Results: The custom-made CNN model obtained a remarkable testing accuracy of 94.32% outperforming other models. CovMediScanX, employing the custom-made CNN underwent evaluation with an independent dataset also. The images in the independent dataset are sourced from a scanning machine that is entirely different from those used for the training dataset, highlighting a clear distinction of datasets in their origins. The evaluation outcome highlighted the framework's capability to accurately detect COVID-19 cases, showcasing encouraging results with a precision of 73% and a recall of 84% for positive cases. However, the model requires further enhancement, particularly in improving its detection of normal cases, as evidenced by lower precision and recall rates.
Conclusion: The research proposes CovMediScanX framework that demonstrates promising potential in automatically identifying COVID-19 cases from CXR images. While the model's overall performance on independent data needs improvement, it is evident that addressing bias through the inclusion of diverse data sources during training could further enhance accuracy and reliability.
Keywords: CNN; COVID-19; Chest X-Rays; Deep learning.
Copyright © 2024. Published by Elsevier Inc.