Background and aims: Impaired inhibitory control accompanied by enhanced craving is hallmark of addiction. This study investigated the effects of transcranial direct current stimulation (tDCS) on response inhibition and craving in Internet gaming disorder (IGD). We examined the brain changes after tDCS and their correlation with clinical variables.
Methods: Twenty-four males with IGD were allocated randomly to an active or sham tDCS group, and data from 22 participants were included for analysis. Participants self-administered bilateral tDCS over the dorsolateral prefrontal cortex (DLPFC) for 10 sessions. Stop-signal tasks were conducted to measure response inhibition and participants were asked about their cravings for Internet gaming at baseline and post-tDCS. Functional magnetic resonance imaging data were collected at pre- and post-tDCS, and group differences in resting-state functional connectivity (rsFC) changes from the bilateral DLPFC and nucleus accumbens were examined. We explored the relationship between changes in the rsFC and behavioral variables in the active tDCS group.
Results: A significant group-by-time interaction was observed in response inhibition. After tDCS, only the active group showed a decrease in the stop-signal reaction time (SSRT). Although craving decreased, there were no significant group-by-time interactions or group main effects. The anterior cingulate cortex (ACC) showed group differences in post- versus pre-tDCS rsFC from the right DLPFC. The rsFC between the ACC and left middle frontal gyrus was negatively correlated with the SSRT.
Discussion and conclusion: Our study provides preliminary evidence that bilateral tDCS over the DLPFC improves inhibitory control and could serve as a therapeutic approach for IGD.
Keywords: Internet gaming disorder; craving; stop-signal task; transcranial direct current stimulation.