Radical electron-induced cellulose-semiconductors

Sci Rep. 2024 Apr 15;14(1):8692. doi: 10.1038/s41598-024-59499-1.

Abstract

Bio-semiconductors are expected to be similar to organic semiconductors; however, they have not been utilized in application yet. In this study, we show the origin of electron appearance, N- and S-type negative resistances, rectification, and switching effects of semiconductors with energy storage capacities of up to 418.5 mJ/m2 using granulated amorphous kenaf cellulose particles (AKCPs). The radical electrons in AKCP at 295 K appear in cellulose via the glycosidic bond C1-O1·-C4. Hall effect measurements indicate an n-type semiconductor with a carrier concentration of 9.89 × 1015/cm3, which corresponds to a mobility of 10.66 cm2/Vs and an electric resistivity of 9.80 × 102 Ωcm at 298 K. The conduction mechanism in the kenaf tissue was modelled from AC impedance curves. The light and flexible cellulose-semiconductors may open up new avenues in soft electronics such as switching effect devices and bio-sensors, primarily because they are composed of renewable natural compounds.