Facile Lithium Densification Kinetics by Hyperporous/Hybrid Conductor for High-Energy-Density Lithium Metal Batteries

Adv Sci (Weinh). 2024 Jul;11(25):e2402156. doi: 10.1002/advs.202402156. Epub 2024 Apr 22.

Abstract

Lithium metal anode (LMA) emerges as a promising candidate for lithium (Li)-based battery chemistries with high-energy-density. However, inhomogeneous charge distribution from the unbalanced ion/electron transport causes dendritic Li deposition, leading to "dead Li" and parasitic reactions, particularly at high Li utilization ratios (low negative/positive ratios in full cells). Herein, an innovative LMA structural model deploying a hyperporous/hybrid conductive architecture is proposed on single-walled carbon nanotube film (HCA/C), fabricated through a nonsolvent induced phase separation process. This design integrates ionic polymers with conductive carbon, offering a substantial improvement over traditional metal current collectors by reducing the weight of LMA and enabling high-energy-density batteries. The HCA/C promotes uniform lithium deposition even under rapid charging (up to 5 mA cm-2) owing to its efficient mixed ion/electron conduction pathways. Thus, the HCA/C demonstrates stable cycling for 200 cycles with a low negative/positive ratio of 1.0 when paired with a LiNi0.8Co0.1Mn0.1O2 cathode (areal capacity of 5.0 mAh cm-2). Furthermore, a stacked pouch-type full cell using HCA/C realizes a high energy density of 344 Wh kg-1 cell/951 Wh L-1 cell based on the total mass of the cell, exceeding previously reported pouch-type full cells. This work paves the way for LMA development in high-energy-density Li metal batteries.

Keywords: fast‐charging; lithium metal densification; lithium‐filling host; mixed conductor; nonsolvent‐induced phase separation.