PET Ligands for Imaging Mutant Huntingtin Aggregates: A Case Study in Non-For-Profit Scientific Management

Chembiochem. 2024 Jun 3;25(11):e202400152. doi: 10.1002/cbic.202400152. Epub 2024 May 2.

Abstract

Positron emission tomography imaging of misfolded proteins with high-affinity and selective radioligands has played a vital role in expanding our knowledge of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The pathogenesis of Huntington's disease, a CAG trinucleotide repeat disorder, is similarly linked to the presence of protein fibrils formed from mutant huntingtin (mHTT) protein. Development of mHTT fibril-specific radioligands has been limited by the lack of structural knowledge around mHTT and a dearth of available hit compounds for medicinal chemistry refinement. Over the past decade, the CHDI Foundation, a non-for-profit scientific management organisation has orchestrated a large-scale screen of small molecules to identify high affinity ligands of mHTT, with lead compounds now reaching clinical maturity. Here we describe the mHTT radioligands developed to date and opportunities for further improvement of this radiotracer class.

Keywords: Huntington's Disease; mutant huntingtin; neurodegenerative disorders; positron emission tomography; proteinopathies; radiochemistry; radiotracers.

Publication types

  • Review

MeSH terms

  • Humans
  • Huntingtin Protein* / chemistry
  • Huntingtin Protein* / genetics
  • Huntingtin Protein* / metabolism
  • Huntington Disease / diagnostic imaging
  • Huntington Disease / genetics
  • Huntington Disease / metabolism
  • Ligands
  • Mutation
  • Positron-Emission Tomography*
  • Protein Aggregates / drug effects
  • Radiopharmaceuticals / chemistry

Substances

  • Huntingtin Protein
  • Ligands
  • HTT protein, human
  • Protein Aggregates
  • Radiopharmaceuticals