Neural network dose prediction for cervical brachytherapy: Overcoming data scarcity for applicator-specific models

Med Phys. 2024 Jul;51(7):4591-4606. doi: 10.1002/mp.17230. Epub 2024 May 30.

Abstract

Background: 3D neural network dose predictions are useful for automating brachytherapy (BT) treatment planning for cervical cancer. Cervical BT can be delivered with numerous applicators, which necessitates developing models that generalize to multiple applicator types. The variability and scarcity of data for any given applicator type poses challenges for deep learning.

Purpose: The goal of this work was to compare three methods of neural network training-a single model trained on all applicator data, fine-tuning the combined model to each applicator, and individual (IDV) applicator models-to determine the optimal method for dose prediction.

Methods: Models were produced for four applicator types-tandem-and-ovoid (T&O), T&O with 1-7 needles (T&ON), tandem-and-ring (T&R) and T&R with 1-4 needles (T&RN). First, the combined model was trained on 859 treatment plans from 266 cervical cancer patients treated from 2010 onwards. The train/validation/test split was 70%/16%/14%, with approximately 49%/10%/19%/22% T&O/T&ON/T&R/T&RN in each dataset. Inputs included four channels for anatomical masks (high-risk clinical target volume [HRCTV], bladder, rectum, and sigmoid), a mask indicating dwell position locations, and applicator channels for each applicator component. Applicator channels were created by mapping the 3D dose for a single dwell position to each dwell position and summing over each applicator component with uniform dwell time weighting. A 3D Cascade U-Net, which consists of two U-Nets in sequence, and mean squared error loss function were used. The combined model was then fine-tuned to produce four applicator-specific models by freezing the first U-Net and encoding layers of the second and resuming training on applicator-specific data. Finally, four IDV models were trained using only data from each applicator type. Performance of these three model types was compared using the following metrics for the test set: mean error (ME, representing model bias) and mean absolute error (MAE) over all dose voxels and ME of clinical metrics (HRCTV D90% and D2cc of bladder, rectum, and sigmoid), averaged over all patients. A positive ME indicates the clinical dose was higher than predicted. 3D global gamma analysis with the prescription dose as reference value was performed. Dice similarity coefficients (DSC) were computed for each isodose volume.

Results: Fine-tuned and combined models showed better performance than IDV applicator training. Fine-tuning resulted in modest improvements in about half the metrics, compared to the combined model, while the remainder were mostly unchanged. Fine-tuned MAE = 3.98%/2.69%/5.36%/3.80% for T&O/T&R/T&ON/T&RN, and ME over all voxels = -0.08%/-0.89%/-0.59%/1.42%. ME D2cc were bladder = -0.77%/1.00%/-0.66%/-1.53%, rectum = 1.11%/-0.22%/-0.29%/-3.37%, sigmoid = -0.47%/-0.06%/-2.37%/-1.40%, and ME D90 = 2.6%/-4.4%/4.8%/0.0%. Gamma pass rates (3%/3 mm) were 86%/91%/83%/89%. Mean DSCs were 0.92%/0.92%/0.88%/0.91% for isodoses ≤ 150% of prescription.

Conclusions: 3D BT dose was accurately predicted for all applicator types, as indicated by the low MAE and MEs, high gamma scores and high DSCs. Training on all treatment data overcomes challenges with data scarcity in each applicator type, resulting in superior performance than can be achieved by training on IDV applicators alone. This could presumably be explained by the fact that the larger, more diverse dataset allows the neural network to learn underlying trends and characteristics in dose that are common to all treatment applicators. Accurate, applicator-specific dose predictions could enable automated, knowledge-based planning for any cervical brachytherapy treatment.

Keywords: brachytherapy; deep learning; dose prediction.

MeSH terms

  • Brachytherapy* / instrumentation
  • Brachytherapy* / methods
  • Female
  • Humans
  • Neural Networks, Computer*
  • Radiation Dosage
  • Radiotherapy Dosage*
  • Radiotherapy Planning, Computer-Assisted* / methods
  • Uterine Cervical Neoplasms* / radiotherapy