Objectives: This study compared the maximal compression force before thread stripping of the novel bone-screw-fastener (BSF) with the traditional buttress screw (TBS) in synthetic osteoporotic and cadaveric bone models.
Methods: The maximum compression force of the plate-bone interface before loss of screw purchase during screw tightening was measured between self-tapping 3.5-mm BSF and 3.5-mm TBS using calibrated load cells. Three synthetic biomechanical models were used: a synthetic osteoporotic diaphysis (model 1), a 3-layer biomechanical polyurethane foam with 50-10-50 pounds-per-cubic-foot layering (model 2), and a 3-layer polyurethane foam with 50-15-50 pounds-per-cubic-foot layering (model 3). For the cadaveric metaphyseal model, 3 sets of cadaveric tibial plafonds and 3 sets of cadaveric tibial plateaus were used. A plate with sensors between the bone and plate interface was used to measure compression force during screw tightening in the synthetic bone models, while an annular load cell that measured screw compression as it slid through a guide was used to measure compression in the cadaver models.
Results: Across all synthetic osteoporotic bone models, the BSF demonstrated greater maximal compression force before stripping compared with the TBS [model 1, 155.51 N (SD = 7.77 N) versus 138.78 N (SD = 12.74 N), P = 0.036; model 2, 218.14 N (SD = 14.15 N) versus 110.23 N (SD = 8.00 N), P < 0.001; model 3, 382.72 N (SD = 20.15) versus 341.09 N (SD = 15.57 N), P = 0.003]. The BSF had greater maximal compression force for the overall cadaver trials, the tibial plafond trials, and the tibial plateau trials [overall, 111.27 N vs. 97.54 N (SD 32.32 N), P = 0.002; plafond, 149.6 N versus 132.92 N (SD 31.32 N), P = 0.006; plateau, 81.33 N versus 69.89 N (SD 33.38 N), P = 0.03].
Conclusions: The novel bone-screw-fastener generated 11%-65% greater maximal compression force than the TBS in synthetic osteoporotic and cadaveric metaphyseal bone models. A greater compression force may increase construct stability, facilitate early weight-bearing, and reduce construct failure.
Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.