Cis-13, 16-docosadienoic acid (DDA) is an omega-6 polyunsaturated fatty acid with great potential for application in medicine and health. Using microbial cell factories for DDA production is considered a viable alternative to extracting DDA from plant seeds. In this study, using Yarrowia lipolytica Po1f (Δku70) as a chassis, firstly, the adaptation of three elongases in Po1f (Δku70) were explored. Secondly, the DDA biosynthetic pathway was redesigned, resulting in a DDA content of 0.046 % of total fatty acids (TFAs). Thirdly, through the "push-pull" strategy, the DDA content increased to 0.078 % of TFAs. By enhancing the supply of acetyl-CoA, the DDA production in the engineered strain YL-7 reached 0.391 % of the TFAs (3.19 mg/L). Through optimizing the fermentation conditions, the DDA titer of YL-7 reached 29.34 mg/L. This research achieves the sustainable biological production of DDA in Y. lipolytica.
Keywords: 16-docosadienoic acid; Cis-13; Metabolic engineering; Polyunsaturated fatty acid; Yarrowia lipolytica.
Copyright © 2024 Elsevier Ltd. All rights reserved.