Objective: To evaluate the mechanical and biological properties of three-dimensionally (3D) printable resins filled with 2-methacryloyloxyethyl phosphorylcholine (MPC) and silicate-based composites and compare with those of a commercially available 3D-printable resin for definitive restorations.
Methods: A group of 3D-printable hybrid resins (HRs) filled with 6 wt% MPC and three different compositions of silicate-based composites (barium silicate to zirconium silicate ratios: 1.50:1 for HR1, 0.67:1 for HR2, and 0.25:1 for HR3) were prepared. The HR groups were compared with the commercially available unfilled 3D-printable resin (CR) marketed for definitive restorations in terms of flexural strength and modulus, fracture toughness, surface roughness, Vickers hardness, light transmittance (all, n = 15), cytotoxicity, and protein adsorption (both, n = 3). All data were analyzed by using non-parametric Kruskal-Wallis and Dunn's tests (α=0.05).
Results: The HR groups had significantly higher flexural strength, modulus, fracture toughness, and hardness values than the CR (P < 0.001). HR3 had the highest surface roughness and light transmittance among the groups (P ≤ 0.006). None of tested resins showed cytotoxicity. Both HR2 and HR3 showed significantly lower protein adsorption than the CR, with a difference of approximately 60% (P ≤ 0.026).
Conclusion: Both HR2 and HR3 exhibited superior mechanical properties (flexural strength, flexural modulus, fracture toughness, and Vickers hardness), light transmittance, and protein-repellent activity than the CR, with no impact on cytotoxicity.
Clinical significance: The MPC/silicate-based composite-filled resins may be a suitable alternative for definitive restorations, given their higher mechanical properties and promising biological properties to prevent microbial adhesion and subsequent biofilm formation, as well as their non-cytotoxic properties.
Keywords: Cytotoxicity; Dental restoration; Hybrid resin; Mechanical properties; Protein adsorption; Silicate composites; Three-dimensional printing; Zwitterionic polymer.
Copyright © 2024. Published by Elsevier Ltd.