Objective: To compare static compliance of the respiratory system (CstRS) and the ratio of partial pressure of end-tidal to arterial carbon dioxide (Pe'CO2/PaCO2), in healthy dogs using two approaches for tidal volume (VT) selection during volume-controlled ventilation: body mass based and driving pressure (ΔPaw) guided.
Study design: Randomized, nonblinded, crossover, clinical trial.
Animals: A total of 19 client-owned dogs anesthetized for castration and ovariohysterectomy.
Methods: After a stable 10 minute baseline, each dog was mechanically ventilated with a VT selection strategy, randomized to a constant VT of 15 mL kg-1 of actual body mass (VTBW) or ΔPaw-guided VT (VTΔP) of 7-8 cmH2O. Both strategies used an inspiratory time of 1 second, 20% end-inspiratory pause, 4 cmH2O positive end-expiratory pressure and fraction of inspired oxygen of 0.4. Respiratory frequency was adjusted to maintain Pe'CO2 between 35 and 40 mmHg. Respiratory mechanics, arterial blood gases and Pe'CO2/PaCO2 were assessed. Continuous variables are presented as mean ± SD or median (interquartile range; quartiles 1-3), depending on distribution, and compared with Wilcoxon signed-rank tests.
Results: The VT was significantly higher in dogs ventilated with VTΔP than with VTBW strategy (17.20 ± 4.04 versus 15.03 ± 0.60 mL kg-1, p = 0.036). CstRS was significantly higher with VTΔP than with VTBW strategy [2.47 (1.86-2.86) versus 2.25 (1.79-2.58) mL cmH2O-1 kg-1, p = 0.011]. There were no differences in Pe'CO2/PaCO2 between VTΔP and VTBW strategies (0.94 ± 0.06 versus 0.92 ± 0.06, p = 0.094). No discernible difference in ΔPaw was noted between the strategies.
Conclusions and clinical relevance: While no apparent difference was observed in the Pe'CO2/PaCO2 between the VT selection strategies employed, CstRS significantly increased during the VTΔP approach. A future trial should explore if VTΔP improves perioperative gas exchange and prevents lung damage.
Keywords: gas exchange; lung volume; mechanical ventilation; respiratory mechanics; tidal volume adjusting.
Copyright © 2024 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.