Background: Dynamic contrast-enhanced-MRI (DCE-MRI) is able to study bone marrow angiogenesis in patients with multiple myeloma (MM) and asymptomatic precursor diseases but its role in the management of MM has not yet been established. The aims of this prospective study was to compare DCE-MRI-based parameters between all monoclonal plasma cell disease stages in order to find out discriminatory parameters and to seek correlations with other diffusion-weighted MRI and positron emission tomography (PET)-based biomarkers in a hybrid simultaneous whole-body-2-[18F]fluorodeoxyglucose (FDG)-PET/MRI (WB-2-[18F]FDG-PET/MRI) imaging approach.
Methods: Patients with newly diagnosed Monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM) or symptomatic MM according to international myeloma working group and underwent WB-2-[18F]FDG-PET/MRI imaging including bone marrow DCE sequences at the Nantes University Hospital were prospectively enrolled in this study before receiving treatment.
Results: One hundred and sixty-seven patients (N = 167, mean age: 64 years ± 11 [Standard deviation], 66 males) were considered for the analysis. DCE-MRI-based Peak Enhancement Intensity (PEI), Time to PEI (TPEI) and their maximum intensity time ratio (MITR: PEI/TPEI) values were significantly different between the different monoclonal plasma cell disease stages, PEI values increasing and TPEI values decreasing progressively along the spectrum of plasma cell disorders, from MGUS stage to symptomatic multiple myeloma. PEI values were significantly higher in patients with diffuse bone marrow involvement (either in PET or in MRI images) than in those without diffuse bone marrow involvement, unlike TPEI values. PEI and TPEI values were not significantly different between patients with or without focal bone lesions.
Conclusion: Different DCE-MRI-based parameters (PEI, TPEI, MITR) could significantly differentiate all monoclonal plasma cell disease stages and complemented conventional MRI and PET-based biomarkers.
Keywords: Multiparametric magnetic resonance imaging; Multiple myeloma; Plasma cell dyscrasias; Positron-emission tomography imaging.
© 2024. The Author(s).