Objective: This study aims to evaluate the performance of the fabian-Predictive-Intelligent-Control-of-Oxygenation (PRICO) system for automated control of the fraction of inspired oxygen (FiO2).
Design: Multicentre randomised cross-over study.
Setting: Five neonatal intensive care units experienced with automated control of FiO2 and the fabian ventilator.
Patients: 39 infants: median gestational age of 27 weeks (IQR: 26-30), postnatal age 7 days (IQR: 2-17), weight 1120 g (IQR: 915-1588), FiO2 0.32 (IQR: 0.22-0.43) receiving both non-invasive (27) and invasive (12) respiratory support.
Intervention: Randomised sequential 24-hour periods of automated and manual FiO2 control.
Main outcome measures: Proportion (%) of time in normoxaemia (90%-95% with FiO2>0.21 and 90%-100% when FiO2=0.21) was the primary endpoint. Secondary endpoints were severe hypoxaemia (<80%) and severe hyperoxaemia (>98% with FiO2>0.21) and prevalence of episodes ≥60 s at these two SpO2 extremes.
Results: During automated control, subjects spent more time in normoxaemia (74%±22% vs 51%±22%, p<0.001) with less time above and below (<90% (9%±8% vs 12%±11%, p<0.001) and >95% with FiO2>0.21 (16%±19% vs 35%±24%) p<0.001). They spent less time in severe hyperoxaemia (1% (0%-3.5%) vs 5% (1%-10%), p<0.001) but exposure to severe hypoxaemia was low in both arms and not different. The differences in prolonged episodes of SpO2 were consistent with the times at extremes.
Conclusions: This study demonstrates the ability of the PRICO automated oxygen control algorithm to improve the maintenance of SpO2 in normoxaemia and to avoid hyperoxaemia without increasing hypoxaemia.
Keywords: neonatology; technology.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.