Entropic timescales of dynamic heterogeneity in supercooled liquid

Phys Rev E. 2024 Jun;109(6):L062102. doi: 10.1103/PhysRevE.109.L062102.

Abstract

Non-Gaussian displacement distributions are universal predictors of dynamic heterogeneity in slowly varying environments. Here, we explore heterogeneous dynamics in supercooled liquid using molecular dynamics simulations and show the efficiency of the relative-entropy based measure, negentropy, in quantifying dynamic heterogeneity over the widely used non-Gaussian parameter. Our analysis shows that the heterogeneity quantified by the negentropy is significantly different from the one obtained using the conventional moment-based definition that considers deviation from Gaussianity up to lower-order moments. We extract the timescales of dynamic heterogeneity using the two methods and show that the differential changes diverge as the system experiences strong intermittency near the glass transition. Further, we interpret the entropic timescales and discuss the general implications of our work.