Predict the characteristics of the DI engine with various injection timings by Glycine max oil biofuel using artificial neural networks

Environ Sci Pollut Res Int. 2024 Jul 25. doi: 10.1007/s11356-024-34429-w. Online ahead of print.

Abstract

Glycine max oil biofuel (GMOB) is a product of the transesterification of soybean oil. It contains a substantial amount of thermal energy. In this study, the result of varying fuel injection timings on the performance, ignition, and exhaust parameters of a research engine with single-cylinder, four-stroke with direct injection (DI) diesel was experimentally investigated and optimised using artificial neural networks (ANN). The results demonstrated that a 20% fuel blend with 24.5° before top dead centre (b TDC) decreased brake thermal efficiency (BTE), NOx emissions, and exhaust cylinder temperature but improved fuel consumption, carbon dioxide emissions (CDE), and smoke emissions. With 26.5° b TDC, the BTE was found to be approximately 5.0% higher while the fuel consumption was approximately 2.0% lower than with the original injection timing of 24.5° b TDC. At 26.5° b TDC, the NOx emission was approximately 8.6% higher, and the smoke emission was approximately 4.07% lower than at the original injection timing (24.5° b TDC).

Keywords: Glycine max oil biofuel; Artificial neural network; Diesel engine; Pollutant formation.