The choice of the calcium (Ca) source in pig diets and the addition of formic acid may affect the gastrointestinal inositol phosphate (InsP) degradation and thereby, phosphorus (P) digestibility in pigs. This study assessed the effects of different Ca sources (Ca carbonate, Ca formate), exogenous phytase, and chemical acidification on InsP degradation, nutrient digestion and retention, blood metabolites, and microbiota composition in growing pigs. In a randomized design, 8 ileal-cannulated barrows (24 kg initial BW) were fed 5 diets containing Ca formate or Ca carbonate as the only mineral Ca addition, with or without 1,500 FTU/kg of an exogenous hybrid 6-phytase. A fifth diet was composed of Ca carbonate with phytase but with 8 g formic acid/kg diet. No mineral P was added to the diets. Prececal InsP6 disappearance and P digestibility were lower (P ≤ 0.032) in pigs fed diets containing Ca formate. In the presence of exogenous phytase, InsP5 and InsP4 concentrations in the ileal digesta were lower (P ≤ 0.019) with Ca carbonate than Ca formate. The addition of formic acid to Ca carbonate with phytase diet resulted in greater (P = 0.027) prececal InsP6 disappearance (87% vs. 80%), lower (P = 0.001) InsP5 concentration, and greater (P ≤ 0.031) InsP2 and myo-inositol concentrations in the ileal digesta. Prececal P digestibility was greater (P = 0.004) with the addition of formic acid compared to Ca carbonate with phytase alone. Prececal amino acid (AA) digestibility of some AA was greater with Ca formate compared to Ca carbonate but only in diets with phytase (P ≤ 0.048). The addition of formic acid to the diet with Ca carbonate and phytase increased (P ≤ 0.006) the prececal AA digestibility of most indispensable AA. Exogenous phytase affected more microbial genera in the feces when Ca formate was used compared to Ca carbonate. In the ileal digesta, the Ca carbonate diet supplemented with formic acid and phytase led to a similar microbial community as the Ca formate diets. In conclusion, Ca formate reduced prececal InsP6 degradation and P digestibility, but might be of advantage in regard to prececal AA digestibility in pigs compared to Ca carbonate when exogenous phytase is added. The addition of formic acid to Ca carbonate with phytase, however, resulted in greater InsP6 disappearance, P and AA digestibility values, and changed ileal microbiota composition compared to Ca carbonate with phytase alone.
Keywords: amino acid; calcium source; exogenous phytase; formic acid; inositol phosphate; microbiota.
The study aimed to investigate the effects of dietary calcium sources, exogenous phytase, and formic acid on inositol phosphate (InsP) degradation and nutrient digestibility in ileal-cannulated growing pigs. It also evaluated the concentrations of phosphorus, calcium, and myo-inositol in the blood, the composition of the microbiota in the ileal digesta and feces, and the concentrations of volatile fatty acids in the feces. Replacing calcium carbonate with calcium formate in the feed reduced prececal InsP6 disappearance and phosphorus digestibility. However, adding formic acid to a diet containing calcium carbonate and phytase enhanced prececal InsP6 disappearance and phosphorus digestibility, and increased InsP2 and myo-inositol concentrations in the ileal digesta. The dietary treatments resulted in more pronounced alterations of the microbiota in the feces than the ileal digesta. In ileal digesta, the shifts in relative abundance were primarily evident among low-abundant genera, while in feces, changes were observed in a larger number among genera with higher levels of abundance. The findings of this study suggest that calcium formate is not a suitable alternative to calcium carbonate for phosphorus digestibility in growing pigs. The release of phosphorus from InsP by exogenous phytase can be increased by adding formic acid.
© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society of Animal Science.