Lightweight concrete offers numerous advantages for modular construction, including easier construction planning and logistics, and the ability to offset additional dead loads induced by double-wall and double-slab features. In a previous study, authors proposed incorporating lightweight aggregate into foamed concrete instead of adding extra foam to achieve lower density, resulting in lightweight concrete with an excellent strength-to-density ratio. This paper further investigated the performance aspects of foamed concrete with lightweight aggregate beyond mechanical strength. To evaluate the effect of aggregate type and foam content, three mix compositions were designed for the lightweight concrete. Specimens were prepared for experimental tests on thermal conductivity and drying shrinkage of lightweight concrete. Results showed that while both the increase in foam volume and the incorporation of lightweight aggregate led to higher drying shrinkage, they also contributed to improved insulating properties and reduced potential of cracking. Using typical multi-storey modular residential buildings in Hong Kong and three other Chinese cities as case studies, simulations were performed to assess potential savings in annual cooling and heating loads by employing the proposed lightweight concrete. These findings demonstrate the practical benefits of using foamed concrete with lightweight aggregate in modular construction and provide valuable insights for further optimization and implementation.
Keywords: building energy simulation; drying shrinkage; foamed concrete; lightweight aggregate; thermal insulation.