Heart failure (HF) continues to impact the population globally with increasing prevalence. While the pathophysiology of HF is quite complex, the dysregulation of the autonomic nervous system, as evident in heightened sympathetic activity, serves as an attractive pathophysiological target for newer therapies and HF. The degree of neurohormonal activation has been found to correlate to the severity of symptoms, decline in functional capacity, and mortality. Neuromodulation of the autonomic nervous system aims to restore the balance between sympathetic nervous system and the parasympathetic nervous system. Given that autonomic dysregulation plays a major role in the development and progression of HF, restoring this balance may potentially have an impact on the core pathophysiological mechanisms and various HF syndromes. Autonomic modulation has been proposed as a potential therapeutic strategy aimed at reduction of systemic inflammation. Such therapies, complementary to drug and device-based therapies may lead to improved patient outcomes and reduce disease burden. Most professional societies currently do not provide a clear recommendation on the use of neuromodulation techniques in HF. These include direct and indirect vagal nerve stimulation, spinal cord stimulation, baroreflex activation therapy, carotid sinus stimulation, aortic arch stimulation, splanchnic nerve modulation, cardiopulmonary nerve stimulation, and renal sympathetic nerve denervation. In this review, we provide a comprehensive overview of neuromodulation in HF.
Keywords: autonomic dysregulation; device; heart failure; innovation; neuromodulation.
© 2023 The Author(s).