Nitrogen-Containing Flavonoids-Preparation and Biological Activity

ACS Omega. 2024 Jul 29;9(32):34938-34950. doi: 10.1021/acsomega.4c04627. eCollection 2024 Aug 13.

Abstract

In this work, we report the application of Buchwald-Hartwig amination for the preparation of new derivatives of quercetin and luteolin. Our investigation delves into the impact of aniline moiety on antioxidant, and anti-inflammatory activity, cytotoxicity, and the ability of flavonoids to modulate drug-resistance mechanisms in bacteria. The anti-inflammatory activity disappeared after the introduction of aniline into the flavonoids and the cytotoxicity remained low. Although the ability of quercetin and luteolin to modulate bacterial resistance to antibiotics has already been published, this is the first report on the molecular mechanism of this process. Both flavonoids attenuate erythromycin resistance by suppressing the ribosomal methyltransferase encoded by the ermA gene in Staphylococcus aureus. Notably, 4-(trifluoromethyl)anilino quercetin emerged as a potent ErmA inhibitor, likely by interacting with the RNA-binding pocket of ErmA. Additionally, both 4-fluoroanilino derivatives effectively impended the staphylococcal efflux system. All the prepared derivatives exhibited superior activity in modulating gentamicin resistance in S. aureus compared to the parent compounds. Overall, the incorporation of substituted anilines into the flavonoid core significantly enhanced its ability to combat multidrug resistance in bacteria.