Deepdive: Leveraging Pre-trained Deep Learning for Deep-Sea ROV Biota Identification in the Great Barrier Reef

Sci Data. 2024 Sep 3;11(1):957. doi: 10.1038/s41597-024-03766-3.

Abstract

Understanding and preserving the deep sea ecosystems is paramount for marine conservation efforts. Automated object (deep-sea biota) classification can enable the creation of detailed habitat maps that not only aid in biodiversity assessments but also provide essential data to evaluate ecosystem health and resilience. Having a significant source of labelled data helps prevent overfitting and enables training deep learning models with numerous parameters. In this paper, we contribute to the establishment of a significant deep-sea remotely operated vehicle (ROV) image classification dataset with 3994 images featuring deep-sea biota belonging to 33 classes. We manually label the images through rigorous quality control with human-in-the-loop image labelling. Leveraging data from ROV equipped with advanced imaging systems, our study provides results using novel deep-learning models for image classification. We use deep learning models including ResNet, DenseNet, Inception, and Inception-ResNet to benchmark the dataset that features class imbalance with many classes. Our results show that the Inception-ResNet model provides a mean classification accuracy of 65%, with AUC scores exceeding 0.8 for each class.

Publication types

  • Dataset

MeSH terms

  • Biodiversity
  • Biota
  • Conservation of Natural Resources
  • Coral Reefs*
  • Deep Learning*
  • Ecosystem