Tumor-associated neutrophils upregulate Nectin2 expression, creating the immunosuppressive microenvironment in pancreatic ductal adenocarcinoma

J Exp Clin Cancer Res. 2024 Sep 11;43(1):258. doi: 10.1186/s13046-024-03178-6.

Abstract

Background: Tumor-associated neutrophils (TANs) constitute an abundant component among tumor-infiltrating immune cells and have recently emerged as a critical player in pancreatic ductal adenocarcinoma (PDAC) progression. This study aimed to elucidate the pro-tumor mechanisms of TAN and identify a novel target for effective immunotherapy against PDAC.

Methods: Microarray and cytokine array analyses were performed to identify the mechanisms underlying the function of TANs. Human and mouse TANs were obtained from differentiated HL-60 cells and orthotopically transplanted PDAC tumors, respectively. The interactions of TANs with cancer and cytotoxic T-cells were evaluated through in vitro co-culture and in vivo orthotopic or subcutaneous models. Single-cell transcriptomes from patients with PDAC were analyzed to validate the cellular findings.

Results: Increased neutrophil infiltration in the tumor microenvironment was associated with poor survival in patients with PDAC. TANs secreted abundant amounts of chemokine ligand 5 (CCL5), subsequently enhancing cancer cell migration and invasion. TANs subpopulations negatively correlated with cytotoxic CD8+ T-cell infiltration in PDAC and promoted T-cell dysfunction. TANs upregulated the membranous expression of Nectin2, which contributed to CD8+ T-cell exhaustion. Blocking Nectin2 improved CD8+ T-cell function and suppressed tumor progression in the mouse model. Single-cell analysis of human PDAC revealed two immunosuppressive TANs phenotypes: Nectin2+ TANs and OLR1+ TANs. Endoplasmic reticulum stress regulated the protumor activities in TANs.

Conclusions: TANs enhance PDAC progression by secreting CCL5 and upregulating Nectin2. Targeting the immune checkpoint Nectin2 could represent a novel strategy to enhance immunotherapy efficacy in PDAC.

Keywords: Chemokine ligand 5; Nectin2; Pancreatic cancer; Tumor immune microenvironment; Tumor-associated neutrophils.

MeSH terms

  • Animals
  • Carcinoma, Pancreatic Ductal* / genetics
  • Carcinoma, Pancreatic Ductal* / immunology
  • Carcinoma, Pancreatic Ductal* / metabolism
  • Carcinoma, Pancreatic Ductal* / pathology
  • Cell Line, Tumor
  • Disease Models, Animal
  • Female
  • Humans
  • Male
  • Mice
  • Nectins* / genetics
  • Nectins* / metabolism
  • Neutrophils* / immunology
  • Neutrophils* / metabolism
  • Pancreatic Neoplasms* / genetics
  • Pancreatic Neoplasms* / immunology
  • Pancreatic Neoplasms* / metabolism
  • Pancreatic Neoplasms* / pathology
  • Tumor Microenvironment* / immunology
  • Up-Regulation

Substances

  • Nectins
  • NECTIN2 protein, human