3D-printing bauxite residue/fly ash-containing geopolymers as promising metal sorbents for water treatment

Waste Manag. 2024 Sep 11:190:35-44. doi: 10.1016/j.wasman.2024.09.007. Online ahead of print.

Abstract

Herein, we demonstrate for the first time the feasibility of employing significant amounts (up to 80 wt%) of unexplored industrial wastes (red mud and biomass fly ash) in the production of highly porous 3D-printed geopolymer lattices envisioned for wastewater treatment applications. This without compromising the mechanical performance of the geopolymers relative to those obtained using commercial precursors. The impact of the fly ash incorporation content in the fresh-state (calorimetric and reological characterization) and hardened-state (porosity and mechanical strength) properties of the produced structures was evaluated. Moreover, the influence of key printing parameters, including nozzle diameter and geometry alignment, on the resulting properties of the lattices was also evaluated. The most promising compositions were then evaluated as lead sorbents under continuous flow. The waste-based 3D-printed lattices showed remarkable adsorption ability reaching >95 % removal efficiency after 2 h. This sustainable strategy is in line with the United Nations sustainable development goals and the transition to a circular economy, reducing the consumption of natural resources and simultaneously contributing to reducing water pollution.

Keywords: Additive manufacturing; Adsorption; Circular economy; Industrial waste; Red mud.