Aging is frequently associated with a progressive increase in chronic low-grade inflammation, known as "inflammaging". Numerous studies have shown that inflammaging is closely linked to the development of several age-related diseases. However, the underlying mechanism and its causal role are still not fully understood despite this association. In the complex context of aging, mesenchymal stem cells (MSCs) undergo changes in behavior and functionality. This narrative topical review examines the recent advances in aging research, specifically focusing on the role of inflammaging and related mechanisms that contribute to age-related chronic diseases. The authors critically investigated whether and how inflammaging, epigenetic damage, mitochondrial changes, and macrophage alterations may influence stem cell behavior, highlighting the interplay between these factors and their potential therapeutic implications. By elucidating the mechanisms underlying these processes, we can gain valuable insights into the maintenance and regeneration of stem cell populations, providing the basis for novel therapeutic strategies targeting age-related decline and disease progression.
Keywords: aging; epigenetic damage; inflammaging; macrophage alterations; mesenchymal stem cells; mitochondrial dynamics.