Lunar synchrony, geography, and individual clocks shape autumn migration timing in an avian migrant

Behav Ecol. 2024 Jan 17;35(2):arae001. doi: 10.1093/beheco/arae001. eCollection 2024 Mar-Apr.

Abstract

Timing programs in animal migrants have been selected to synchronize movements that coincide with predictable resources on the breeding and nonbreeding grounds. Migrants face potential temporal conflicts if their migration schedules benefit from synchrony to conflicting rhythms associated with annual biogeographical (circannual) cues, lunar (circalunar) cues, or individually repeatable internal clocks. We repeat-tracked individuals of an avian lunaphilic species, Eastern Whip-poor-will (Antrostomus vociferus), for two to three successive autumn migrations to determine the influence of the lunar cycle, breeding location, and individual repeatability on migration timing. Almost all birds avoided departing for migration during a full moon, likely to take advantage of the bright moonlight to facilitate visual foraging and enhance pre-migration fattening. However, groups from two latitudinally distant sampling areas adjusted their autumn departure timing differently relative to the timing of the September full moon, presumably due to differences in seasonal prey availability. Individual repeatability increased throughout autumn migration, suggesting that the factors responsible for shaping migration timing may differ for different migration stages. Our results, that lunar synchrony, local climate, and individual internal clocks appeared to account for much of the variation in migration timing in whip-poor-wills, underscore the value of measuring potentially interacting factors that shape migratory behavior at species, group, and individual levels. It remains unclear if, or how, maintaining individually repeatable annual migration schedules provides an adaptive benefit for whip-poor-wills or other lunaphilic migrants. Further clarifying the reasons for phenotypic variation in whip-poor-will migration timing will improve predictions of their abilities to adjust migratory movements under changing environmental conditions.

Keywords: Antrostomus; internal clock; lunar synchrony; migration phenology; nightjar; repeatability.