Background: Epilepsy surgery for extratemporal lobe epilepsy (ETLE) is challenging, particularly when MRI findings are non-lesional and seizure patterns are complex. Invasive diagnostic techniques are crucial for accurately identifying the epileptogenic zone and its relationship with surrounding functional tissue. Microscope-based augmented reality (AR) support, combined with navigation, may enhance intraoperative orientation, particularly in cases involving subtle or indistinct lesions, thereby improving patient outcomes and safety (e.g., seizure freedom and preservation of neuronal integrity). Therefore, this study was conducted to prove the clinical advantages of microscope-based AR support in ETLE surgery. Methods: We retrospectively analyzed data from ten patients with pharmacoresistant ETLE who underwent invasive diagnostics with depth and/or subdural grid electrodes, followed by resective surgery. AR support was provided via the head-up displays of the operative microscope, with navigation based on automatic intraoperative computed tomography (iCT)-based registration. The surgical plan included the suspected epileptogenic lesion, electrode positions, and relevant surrounding functional structures, all of which were visualized intraoperatively. Results: Six patients reported complete seizure freedom following surgery (ILAE 1), one patient was seizure-free at the 2-year follow-up, and one patient experienced only auras (ILAE 2). Two patients developed transient neurological deficits that resolved shortly after surgery. Conclusions: Microscope-based AR support enhanced intraoperative orientation in all cases, contributing to improved patient outcomes and safety. It was highly valued by experienced surgeons and as a training tool for less experienced practitioners.
Keywords: AR; augmented reality; epilepsy surgery; extratemporal lobe epilepsy; focal cortical dysplasia; multimodality; neuronavigation.