Concrete with good mechanical properties and durability has always been a necessity in engineering. The addition of fibers and supplementary cementitious materials to concrete can enhance its mechanical and durability performance through a series of chemical and physical interactions. This study aims to investigate the effects of key parameters on the compressive strength, splitting tensile strength, and chloride penetration resistance of concrete combined with ground granulate blast furnace slag (GGBS) and macro polypropylene synthetic fiber (MSF). Based on the Taguchi method, a total of eighteen mixtures were evaluated, considering the effects of GGBS content, MSF content, water-to-binder (w/b) ratio, and chloride solution concentration on concrete properties. The results showed that the w/b ratio has a significant impact on the properties of concrete, which are enhanced by a decrease in w/b ratio. The GGBS content had little effect on the 28-day strength of concrete, which even decreased with a large GGBS content, but GGBS had a positive effect on the long-term strength of concrete. Moreover, the chloride penetration resistance of concrete was enhanced by an increase in the GGBS content. The MSF content had no obvious effects on the compressive strength and chloride penetration resistance of concrete, but it could enhance the splitting tensile strength to some extent, and this enhancement was more obvious over time. The chloride diffusion coefficient of concrete changed with the concentration of chloride solution, and the two increased simultaneously.
Keywords: building materials; chloride diffusion coefficient; fiber-reinforced concrete; ground granulated blast furnace slag; macro synthetic fiber; mechanical properties.