Emergence of unitary symmetry of microcanonically truncated operators in chaotic quantum systems

Phys Rev E. 2024 Sep;110(3):L032203. doi: 10.1103/PhysRevE.110.L032203.

Abstract

We study statistical properties of matrix elements of observables written in the energy eigenbasis and truncated to small microcanonical windows. We present numerical evidence indicating that for all few-body operators in chaotic many-body systems, truncated below a certain energy scale, collective statistical properties of matrix elements exhibit emergent unitary symmetry. Namely, we show that below a certain scale the spectra of the truncated operators exhibit universal behavior, matching our analytic predictions, which are numerically testable for system sizes beyond exact diagonalization. We discuss operator and system-size dependence of the energy scale of emergent unitary symmetry and put our findings in the context of previous works exploring the emergence of random-matrix behavior at small energy scales.