Lactiplantibacillus plantarum (LP) is a well-known probiotic strain that has a beneficial effect in preventing ulcerative colitis. However, delivering a sufficient number of viable LP to the colon still face challenges due to its vulnerability to the highly complex intestinal flora ecosystem. Herein, we present a centrifuge-driven micronozzle system designed for double-layered core-shell alginate microcapsules (DAM), which can serve as an effective carrier for dual delivery of resistant starch nanoparticles (RSNP, prebiotic) and LP (probiotics) for the treatment of colitis. This system enables precise loading of LP and RSNP within the core and shell regions of DAM, respectively. The resulting LP/RS@DAM exhibited a high encapsulation efficiency of LP (108 CFU per bead), in which the dense distribution of RSNP in the shell effectively protected LP against acidic conditions (pH 2) and maintained the cell viability up to 52 % even after long-term storage for 30 days. Furthermore, LP/RS@DAM effectively enhances the production of short-chain fatty acids, leading to a reduction in inflammatory cytokines and restoration of intestinal microbial diversity in dextran sulfate sodium (DSS)-induced colitis. We believe that this innovative approach would offer a potential solution for improving colitis management and paving the way for tailored therapeutic interventions in gastrointestinal disorders.
Keywords: Alginate; Colitis; Encapsulation; Probiotic delivery; Resistant starch.
Copyright © 2024 Elsevier B.V. All rights reserved.