A responsive nanoprobe for ratiometric florescence detection of hydroxyl radicals in macrophage polarization

J Mater Chem B. 2024 Oct 21. doi: 10.1039/d4tb01934b. Online ahead of print.

Abstract

Quantification of hydroxyl radicals (˙OH), one form of reactive oxygen species (ROS), plays critical roles in early diagnosis and treatment monitoring of various diseases. In this work, we report the development of a responsive nanoprobe for ratiometric fluorescence detection and imaging of ˙OH in macrophage polarization. The nanoprobe, BSA-CCA@LDH-SRB, was designed and prepared using coumarin 3-carboxylic acid (CCA) as the sensing unit for ˙OH, and sulforhodamine B (SRB) loaded on layered double hydroxide (LDH) served as the fluorescent reference component. The coupling of CCA to bovine serum albumin (BSA) and the loading of BSA-CCA on the surface of LDH enabled the nanoprobe for fluorescence detection of ˙OH with high sensitivity and minimal interference from other biomolecules, ions, and ROS. The emission of the prepared BSA-CCA@LDH-SRB at 444 nm emerged and the intensity was increased according to the concentration of ˙OH, while the emission at 580 nm was maintained, allowing the nanoprobe for ratiometric fluorescence (F444/580) detection of ˙OH. Loading of the BSA protein on the LDH surface and the biocompatibility and colloidal stability of the LDH-based fluorescent nanoprobe were further improved, facilitating the detection of ˙OH generation in macrophage polarization stimulated by both biomolecules and physical ultrasound irradiation. This study thus offers a new nanoprobe as the tool for investigating ˙OH evolutions, advancing the biomedical investigations of macrophage polarization associated inflammation.