Carbon dots for pathogen detection and imaging: recent breakthroughs and future trends

Mikrochim Acta. 2024 Oct 21;191(11):684. doi: 10.1007/s00604-024-06762-x.

Abstract

As a class of carbon-based nanomaterials, carbon dots (CDs) have gained a lot of interest for a variety of applications. They offer distinctive optical, chemical, and structural characteristics along with favourable attributes such as low cost, availability of abundant functional groups, remarkable chemical inertness, high stability, exceptional biocompatibility, and ecofriendliness. This review discusses synthesis methods, structural characteristics, and surface modifications of CDs, specific for pathogen detection. Furthermore, it delves into the mechanisms that govern the interaction between pathogens and CDs. In addition, the study explores the use of CDs in a number of detection modalities, such as optical, electrochemical, and electrochemiluminescence, emphasising real-time pathogen monitoring. Moreover, both the challenges and opportunities related to the application of CDs-based detection and imaging methods are highlighted in field and clinical contexts.

Keywords: Bioimaging; Carbon dots; Electrochemical; Electrochemiluminescence; Optical; Pathogens.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biosensing Techniques / methods
  • Carbon* / chemistry
  • Electrochemical Techniques / methods
  • Humans
  • Luminescent Measurements / methods
  • Quantum Dots* / chemistry

Substances

  • Carbon