Purpose: The aim of this study was to set up reliable and reproducible culture conditions for 3D tumoroids derived from non-small cell lung cancer (NSCLC) cell lines to enable greater opportunity for successful cultivation of patient-derived samples.
Methods: Four NSCLC cell lines, two adenocarcinomas (A549, NCI-H1975) and two squamous cell carcinomas (HCC-95, HCC-1588), were first cultured in traditional 2D settings. Their expected expression profiles concerning TTF-1, CK7, CK5, and p40 status were confirmed by immunohistochemistry (IHC) before the generation of 3D cultures. Tumoroids were established in the hydrogel GrowDex®-T, Nunclon™ Sphera™ flasks, BIOFLOAT™ plates, and Corning® Elplasia® plates. Western blot was used to verify antigen protein expression. Hematoxylin-eosin staining was used to evaluate the cell morphology in the 2D and 3D cultures. Mutational analysis of KRAS and EGFR by PCR on extracted DNA from 3D tumoroids generated from cells with known mutations (A549; KRAS G12S mutation, NCI-H1975; EGFR L858R/T790M mutations).
Results: We successfully established 3D cultures from A549, NCI-H1975, HCC-95, and HCC-1588 with all four used cultivation methods. The adenocarcinomas (A549, NCI-H1975) maintained their original IHC features in the tumoroids, while the squamous cell carcinomas (HCC-95, HCC-1588) lost their unique markers in the cultures. PCR analysis confirmed persistent genetic changes where expected.
Conclusion: The establishment of tumoroids from lung cancer cell lines is feasible with various methodologies, which is promising for future tumoroid growth from clinical lung cancer samples. However, analysis of relevant markers is a prerequisite and may need to be validated for each model and cell type.
Keywords: Adenocarcinoma; Culture; Immunohistochemistry; Squamous cell carcinoma; Tumoroid.
© 2024. The Author(s).