Periodontal disease poses significant challenges to the long-term stability of oral health by destroying the supporting structures of teeth. Guided tissue regeneration techniques, particularly barrier membranes, enable local regeneration by providing an isolated, protected compartment for osseous wound healing while excluding epithelial tissue. Here, this study reports on a thermosensitive periodontal membrane (TSPM) technology designed to overcome the mechanical limitations of current membranes through a semi-interpenetrating network of high molecular weight poly(L-lactic acid) (PLLA) and in situ-polymerized mesh of poly(ε-caprolactone)diacrylate (PCL-DA), and poly lactide-co-glycolide diacrylate (PLGA-DA). An optimized composition allows facile reshaping at greater than 52 °C and rigid shape maintenance at physiological temperature. Its unique bilayer morphology is achieved through self-assembly and thermally-induced phase separation, resulting in distinct yet continuous smooth and nanofibrous compartments adequate for epithelial occlusion and regeneration. Incorporating PLGA-DA enhances the membrane's hydrophilicity and degradation properties, facilitating a more rapid and controlled degradation and therapeutic delivery. This study demonstrates its ability to promote local regeneration by serving as a barrier membrane and simultaneously as a scaffolding matrix in a rat orthotopic periodontal defect model. The TSPM outperformed a clinically available material (Epi-Guide) to facilitate robust alveolar bone and periodontal ligament regeneration at 4 and 8 weeks.
Keywords: bone; membrane; network polymer; periodontal ligament; periodontal regeneration; tissue engineering.
© 2024 The Author(s). Advanced Healthcare Materials published by Wiley‐VCH GmbH.