Climate change and growing population and their strain on animal production are the impending challenges that the developing countries, like India, need to tackle in the coming days. This study aimed to detect and analyze the uncharacterized variation in the gene expression patterns with the change of condition, from thermoneutral to chronic hot-humid, in the Sahiwal cattle, one of the best breeds of milk-producing cattle in India, known for being heat-tolerant. Using RNA-Seq analysis on peripheral blood mononuclear cells (PBMCs), 4021 differentially expressed mRNAs (2772 upregulated, 1249 downregulated) and 1303 differentially expressed long non-coding RNAs (769 upregulated, 534 downregulated) were identified, with the thresholds of false discovery rate < 0.05 and|log2(fold change)| > 2. Significantly (p-adjusted < 0.05) overrepresented Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathways were analyzed, revealing upregulation of processes like pyruvate metabolic process, gluconeogenesis, ion transmembrane transport, neuropeptide signaling pathway, and animal organ development, with genes like SHH, GRK1, CHRM3, CAMK2A, and HSPB7 were upregulated, while translation and immune responses, with genes like RPS3, EEF1A1, TNF, BoLA-DRB3, and UBB were downregulated. Analysis of cis-mRNAs of DE-lncRNAs showed presence of both up- and down-regulated cis-mRNAs for both up- and down-regulated lncRNAs indicating existence of positive and negative regulation of mRNA expression by lncRNAs. Managemental nudges that decrease metabolic heat generation, like betaine and chromium supplementation, and increase heat dissipation, like microenvironment cooling, should be utilized. This study highlights the role of pyruvate metabolism and gluconeogenesis in coping up with heat stress and offers an improved understanding of the heat stress response of Sahiwal cattle along with the genes and pathways responsible for it.
Keywords: Heat stress; Pyruvate metabolic process; RNA-Seq; Sahiwal cattle; Transcriptomics; lncRNA.
© 2024. The Author(s) under exclusive licence to International Society of Biometeorology.