Bolt loosening detection is crucial for ensuring the safe operation of equipment. This paper presents a vision-based real-time detection method that identifies bolt loosening by recognizing anti-loosening line markers at bolt connections. The method employs the YOLOv10-S deep learning model for high-precision, real-time bolt detection, followed by a two-step Fast-SCNN image segmentation technique. This approach effectively isolates the bolt and nut regions, enabling accurate extraction of the anti-loosening line markers. Key intersection points are calculated using ellipse and line fitting techniques, and the loosening angle is determined through spatial projection transformation. The experimental results demonstrate that, for high-resolution images of 2048 × 1024 pixels, the proposed method achieves an average angle detection error of 1.145° with a detection speed of 32 FPS. Compared to traditional methods and other vision-based approaches, this method offers non-contact measurement, real-time detection capabilities, reduced detection error, and general adaptability to various bolt types and configurations, indicating significant application potential.
Keywords: bolt loosening detection; computer vision; deep learning; structural health monitoring.