The role of hyperthermia in the treatment of tumor

Crit Rev Oncol Hematol. 2024 Oct 24:104541. doi: 10.1016/j.critrevonc.2024.104541. Online ahead of print.

Abstract

Despite recent advancements in the diagnosis and treatment options for cancer, it remains one of the most serious threats to health. Hyperthermia (HT) has emerged as a highly promising area of research due to its safety and cost-effectiveness. Currently, based on temperature, HT can be categorized into thermal ablation and mild hyperthermia. Thermal ablation involves raising the temperature within the tumor to over 60°C, resulting in direct necrosis in the central region of the tumor. In contrast, mild hyperthermia operates at relatively lower temperatures, typically in the range of 41-45°C, to induce damage to tumor cells. Furthermore, HT also serves as an immune adjuvant strategy in radiotherapy, chemotherapy, and immunotherapy, enhancing the effectiveness of radiotherapy, increasing the uptake of chemotherapy drugs, and reprogramming the tumor microenvironment through the induction of immunogenic cell death, thereby promoting the recruitment of endogenous immune cells. This article reviews the current status and development of hyperthermia, outlines potential mechanisms by which hyperthermia inhibits tumors, describes clinical trial attempts combining hyperthermia with radiotherapy, chemotherapy, and immunotherapy, and discusses the relationship between nanoparticles and hyperthermia.

Keywords: Hyperthermia; Nanoparticles; Thermal ablation; Tumor; Tumor immune microenvironment.

Publication types

  • Review