Neuroimaging genetics represents a multivariate approach aimed at elucidating the intricate relationships between high-dimensional genetic variations and neuroimaging data. Predominantly, existing methodologies revolve around Sparse Canonical Correlation Analysis (SCCA), a framework we expand to 1) encompass multiple imaging modalities and 2) promote the simultaneous identification of structurally linked features across imaging modalities. The structurally linked brain regions were assessed using diffusion tensor imaging, which quantifies the presence of neuronal fibers, thereby grounding our approach in biologically well-founded prior knowledge within the SCCA model. In our proposed structurally linked SCCA framework, we leverage T1-weighted MRI and functional MRI (fMRI) time series data to delineate both the structural and functional characteristics of the brain. Genetic variations, specifically single nucleotide polymorphisms (SNPs), are also incorporated as a genetic modality. Validation of our methodology was conducted using a simulated dataset and large-scale normative data from the Human Connectome Project (HCP). Our approach demonstrated superior performance compared to existing methods on simulated data and revealed interpretable gene-imaging associations in the real dataset. Thus, our methodology lays the groundwork for elucidating the genetic underpinnings of brain structure and function, thereby providing novel insights into the field of neuroscience. Our code is available at https://github.com/mungegg.
Keywords: T1 MRI.; fMRI; human connectome project; neuroimaging genetics; sparse canonical correlation.
© 2024 The Authors.